PCA response – Rossi 2000

Outline:

Characteristics of ftools5.0/pcarmf_v7.01/pcarsp v2.43 variation with time residuals vs Energy comparison with HEXTE

Next steps

(Calibration input and matrix generation)

Keith Jahoda, 22 March 2000

PCA response vs Time

Power law index fit to Crab Monitoring Observations shows $\Gamma \sim 2.16$

Layer 1:

PCU to PCU agreement to better than $\Delta\Gamma \sim 0.06$

Individual detectors have stability over mission lifetime $\Delta\Gamma(t) < 0.03$

Full detector:

Similar to layer 1 alone, but with trend to higher G in last two years $(\Delta\Gamma \sim 0.05)$

Ftools 5.0/pcarmf v7.01

Dec 97: Power law fits to Crab give G = 2.16 (layer 1) and 2.18 (full PCA)

Ratio gives estimate of systematic error:

residuals at 6, 30 keV have equivalent width of 60, -700 eV

Ftools v5.0/pcarmf v7.01

Systematics are similar over life of mission.

G(layer1) G(total)

Apr 96	2.18	2.18
Dec 97	2.16	2.18
Jan 99	2.16	2.19
Oct 99	2.17	2.21

PCA – HEXTE comparison

Mode 1			Component)wabs[4]) Value	Data
par	par	COMP					grou
1	1	1	constant	factor		1,000	frozen 1
2	2	2	peopurlu	Pho Index		2.218	+/- 0.1225E-02 1
3	3	2	peopurlu	eMin	keV	2,000	frozen 1
4	4	2	pegpurlu	eMax	keV	10,00	frozen
5	5	2	pegpurlu	norm		2,2493E+04	+/- 10.02
234567	8	3	peopurlu	PhoIndex		1,668	+/- 0.3614E-02 1
7	9	3	peopurlu	eMin	keV	2,000	frozen 1
8	10	3	peopurlu	eMax	keV	10,00	frozen 1
9	5	3	peopurlu	norm		2249.	= par 5 * 0.1000
10	6	4	wabs	nH	10^22	0.3000	frozen 1
11	7	5	constant	factor		0.9541	+/- 0.1082E-02 2
12	2	6	peopurlu	PhoIndex		2,218	
13	2	6	pegpurlu	eMin	keV	2,000	= par 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
14	4	6	peopurlu	eMax	keV	10,00	
15	5	6	peopurlu	norm	200	2,2493E+04	= par 4 = par 5
16	8	7	peopurlu	PhoIndex		1,668	= par 6 2
17	9	7	peopurlu	eMin	keV	2,000	= par 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
18	10	7	peopurlu	eMax	keV	10,00	= par 8 2
19	5	7	pegpwrlw	norm		2249.	= par 5 * 0.1000
20	6	8	wabs	nH	10^22	0.3000	= par 10 2

Ftools 5.0 –

Individual fits to single power law give G = 2.16, 2.08 Joint fit to 2 power–laws shown Single power law fits to faked data give G = 2.15, 2.07

Complex model required. G_2 and relative norm can be measured from phase resolved RXTE Crab data

PCARMF – next steps

 $cd \sim = 2.12$, Layer 1 and total

Working version (7.01_8i)

new parameterization of self vetoing at higher energies

quadratic term in energy to channel relationship

adjusted gm/cm² Xe in layers 2 and 3

equivalent width of residuals at 6 and 35 keV ~ 40 and 400 eV

Comparsion with HEXTE ready for consistent treatment of phase resolved spectra

